Research papers of the week – April 3, 2023

The Application of Hyperspectral Imaging Technologies for the Prediction and Measurement of the Moisture Content of Various Agricultural Crops during the Drying Process

Ebrahim Taghinezhad; Antoni Szumny; Adam Figiel
Molecules

Ministerial score = 140.0
Journal Impact Factor (2023) = 4.927 (Q2)

molecules.jpgDrying is one of the common procedures in the food processing steps. The moisture content (MC) is also of crucial significance in the evaluation of the drying technique and quality of the final product. However, conventional MC evaluation methods suffer from several drawbacks, such as long processing time, destruction of the sample and the inability to determine the moisture of single grain samples. In this regard, the technology and knowledge of hyperspectral imaging (HSI) were addressed first. Then, the reports on the use of this technology as a rapid, non-destructive, and precise method were explored for the prediction and detection of the MC of crops during their drying process. After spectrometry, researchers have employed various pre-processing and merging data techniques to decrease and eliminate spectral noise. Then, diverse methods such as linear and multiple regressions and machine learning were used to model and predict the MC. Finally, the best wavelength capable of precise estimation of the MC was reported. Investigation of the previous studies revealed that HSI technology could be employed as a valuable technique to precisely control the drying process. Smart dryers are expected to be commercialised and industrialised soon by the development of portable systems capable of an online MC measurement.

DOI:10.3390/molecules28072930

 

READ THE PAPER UPWr Base

magnacarta-logo.jpg eua-logo.png hr_logo.png logo.png eugreen_logo_simple.jpg iroica-logo.png bic_logo.png