Research papers of the week – December 25, 2023

Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application

Paulina Śliwka; Grzegorz Skaradziński; Izabela Dusza; Aleksandra Grzywacz; Aneta Skaradzińska
Pharmaceutics

Ministerial score = 140.0
Journal Impact Factor (2023) = 5.4 (Q1)

pharmaceutics.jpgTherapeutic application of bacterial viruses (phage therapy) has in recent years been rediscovered by many scientists, as a method which may potentially replace conventional antibacterial strategies. However, one of the main problems related to phage application is the stability of bacterial viruses. Though many techniques have been used to sustain phage activity, novel tools are needed to allow long-term phage storage and application in versatile forms. In this study, we combined two well-known methods for bacteriophage immobilization. First, encapsulated phages were obtained by means of extrusion–ionic gelation, and then alginate microspheres were dried using the lyophilization process (freeze-drying). To overcome the risk of phage instability upon dehydration, the microspheres were prepared with the addition of 0.3 M mannitol. Bacteriophage-loaded microspheres were stored at room temperature for 30 days and subsequently exposed to simulated gastric fluid (SGF). The survival of encapsulated phages after drying was significantly higher in the presence of mannitol. The highest number of viable bacteriophages exceeding 4.8 log10 pfu/mL in SGF were recovered from encapsulated and freeze-dried microspheres, while phages in lyophilized lysate were completely inactivated. Although the method requires optimization, it may be a promising approach for the immobilization of bacteriophages in terms of practical application.

DOI:10.3390/pharmaceutics15122792

 

READ THE PAPER UPWr Base

magnacarta-logo.jpg eua-logo.png hr_logo.png logo.png eugreen_logo_simple.jpg iroica-logo.png bic_logo.png