

Towards 1-cm Galileo orbits

Grzegorz Bury, Krzysztof Sośnica, Radosław Zajdel, Dariusz Strugarek Institute of Geodesy and Geoinformatics WUELS

Coping with direct Solar Radiation Pressure

- Not adjusted for albedo absorption
- Antenna thrust is neglected (constant radial acceleration)
- Considers the "yaw-steering"
- Orbit modelling problems when the satellite enters the Earth shadow (ECOM parameters = 0)

GNSS satellites characteristics – "Box-wing" model

System	Туре	Solar panels area [m²]	Bus area [X/Y/Z] [m ²]	Altitude above the Earth surface [km]	Mass [kg]
GPS	Block IIF	13.60	5.72 /7.01/ 5.40	20 200	1555
Galileo	IOV	10.82	1.32 /3.00/ 3.00	23 200	695
	FOC / FOC ecc.	10.82	1.32 /2.78/ 3.04	23 200 / 17 000-26 000	708/645

Accelerations resulting from SRP, albedo and IR based on the analytical box-wing model

SRP – "Box wing" model – accelerations in D and B directions

SRP – spectral analysis – Galileo E08 – nominal orbit

ECOM absorbs most of the direct SRP

angles

• "Thrice-per-rev" are not estimated, thus cause errors for lower β

$$\begin{bmatrix} D \\ Y \\ B \end{bmatrix} = \begin{bmatrix} \mathbf{D_0} + D_{2C} \cos 2\Delta u + D_{2S} \sin 2\Delta u \\ Y_0 \\ B_0 + B_{1C} \cos \Delta u + B_{1S} \sin \Delta u \end{bmatrix}$$

SRP – spectral analysis – Galileo E14 – elliptic orbit

ECOM does not absorb perturbations resulting from SRP for the Galileo satellites launched into elliptic orbits. How about the albedo and IR?

$$\begin{bmatrix} D \\ Y \\ B \end{bmatrix} = \begin{bmatrix} D_0 + D_{2C} \cos 2\Delta u + D_{2S} \sin 2\Delta u \\ Y_0 \\ B_0 + B_{1C} \cos \Delta u + B_{1S} \sin \Delta u \end{bmatrix}$$

Albedo

Albedo and IR – spectral analysis – Galileo E08 – nominal orbit

- ECOM2 does not absorb the whole albedo influence
- Not only the periodic perturbations, but also the constant accelerations resulting from IR has an impact on the GNSS satellites

$$\begin{bmatrix} D \\ Y \\ B \end{bmatrix} = \begin{bmatrix} \mathbf{D}_0 + D_{2C} \cos 2\Delta u + \mathbf{D}_{2S} \sin 2\Delta u \\ Y_0 \\ B_0 + B_{1C} \cos \Delta u + B_{1S} \sin \Delta u \end{bmatrix}$$

Estimation of the Galileo orbit

parameters

Solution	Box-wing	Empirical parameters	Albedo + IR + antenna thrust
B0	YES		YES
B0	YES	D0,Y0,B0	YES
B1	YES	D0,Y0,B0, B1S,B1C	YES
B2	YES	D0,Y0,B0, B1S,B1C,D2C, D2S	YES
E1	NO	D0,Y0,B0, B1S,B1C	YES
E2	NO	D0,Y0,B0, B1S,B1C,D2C, D2S	YES
N2	ΝΟ	D0,Y0,B0, B1S,B1C,D2C, D2S	ΝΟ

Box-wing

Internal quality control – orbit misclosures

Standard CODE solution based on the ECOM2

External quality control – SLR validation

Significant decrease of STD of the SLR residuals for $|\beta| < 12.3^{\circ}$, i.e., when the satellites enters the Earth shadow

	B0	B1	E2
Mean [mm]	5.5	6.4	0.4
STD [mm]	24.7	24.7	29.5
STD [mm] β < 12.3 [°]	24.0	24.7	37.2

- Box-wing model absorbs the higher order SRP terms,
- The maximum effect for the radial component exceeds 50 mm, and for the orbit semi-major axis 200 mm.

SLR residual dependence on the elongation angle

N2

180

E2

150

150

150

180

180

E1

	BB	В0	E2
Slope [mm/°]	0.077	0.003	-0.328
STD [mm]	27.3	24.7	29.5

Summary

Precise orbit determination for Galileo is more challenging than for GPS due to the lower mass of the Galileo satellites and the higher X:Z area ration than for the GPS satellites.

In order to absorb the influence of albedo and IR (especially for the Galileo on the elliptic orbits), it is necessary to estimate the higher order terms of the empirical models or usage of the box-wing model.

The usage of the box-wing model significantly improves the Galileo orbit solution when the satellites enter the Earth shadow, i.e., the **SLR residuals decrease from 37 to 25 mm for the HYBRID solution.**

Moreover, the reduction of the empirical parameters stabilizes the solution.

Thank you for your attention!

Grzegorz Bury Institute of Geodesy and Geodynamics grzegorz.bury@upwr.edu.pl

Backup slides...

The impact of the box-wing model on the global geodetic parameters (Geocenter)

 Reduction of the dependence of the error of the Z component of geocenter estimates on the orbit plane orientation w.r.t the Sun with the reduction of the estimated empirical orbit parameters

• The higher values of the satellite position differences for the Galileo on elliptic orbits come from their orbit characteristics (relativistic effects)

Galileo-IOV E19

Galileo-IOV E12

Empirical parameters estimates

$$\begin{bmatrix} D \\ Y \\ B \end{bmatrix} = \begin{bmatrix} D_0 + D_{2C} \cos 2\Delta u + D_{2S} \sin 2\Delta u \\ Y_0 \\ B_0 + B_{1C} \cos \Delta u + B_{1S} \sin \Delta u \end{bmatrix}$$

- Box-wing absorbs up to 97% of the direct SRP and other "μ"-accelerations acting on the Galileo satellites.
- The constant accelerations result from the misalignment of the solar panels w.r.t the Sun.
- Box-wing model diminishes the dependence of the empirical parameters estimates on the β angles.

and the second sec	
Source	Magnitude [nm/s ²]
Direct SRP	122.0
Albedo	1.0
Infrared radiation	1.0
Antenna thrust	1.2
D ₀ variability	0.4
Y – bias (FOC)	0.7
B – bias _{max} (IOV)	3.6
Thermal effect (D _{2S} variability)	0.8

Empirical parameters estimates differences

Impact of albedo, IR, and antenna thrust

Galileo-FOC E08 - position difference in radial [mm] 90 50 60 30 45 β [°] 40 -30 -60 35 -90 -180 90 180 -90 0 Galileo-FOC E08 - semimajor axis difference [mm] 90 200 60 30 180 β [°] 160 -30 -60 140 -90 -180 -90 90 180 0 ∆u [°]

Quality of the Galileo orbit predictions

