

INCREaSE GEOWorkshop

March 28, 2019

Wroclaw, Poland

Employing data from Numerical Weather Models in Space Geodesy

Daniel Landskron, Janina Boisits, Johannes Böhm Technische Universität Wien, Austria

Troposphere Modeling

Azimuthal Symmetry:

$$\Delta L_0(e) = \Delta L_h^z * mf_h(e) + \Delta L_w^z * mf_w(e)$$

Azimuthal Asymmetry:

 $\Delta L(a, e) = \Delta L_0(e) + mf_g(e) * [G_N \cos(a) + G_E \sin(a)]$

- e: elevation
- *a*: azimuth
- <u>\[\(e)</u>: total delay
- ΔL^z(e): zenith delay
- $\Delta L_o(e)$: total delay without regarding azimuthal asymmetry
- *mf(e)*: mapping function
- G_N, G_E : north and east gradient

Difference discrete/empirical models

• Discrete models

Based on real observations for a certain time and location

Empirical models

Based on experience values from climatology

2019/03/28 Employing data from Numerical Weather Models in Space Geodesy (Landskron et al., 2019)

Models by TU Wien (1)

Azimuthal Symmetry -> Mapping functions

• Discrete

VMF3

VMF1

Vienna Mapping Functions 3

Vienna Mapping Functions 1

Empirical

GPT2w

- Global Pressure and Temperature 3
 - Global Pressure and Temperature 2 wet
- GPT2 Global Pressure and Temperature 2
- GIOBAL Mapping Functions

Models by TU Wien (2)

Azimuthal Asymmetry -> Horizontal Gradients

• Discrete

A priori horizontal gradients

Linear Horizontal Gradients

Š

Global Pressure and Temperature 3

- APG
- A Priori Gradients 🛛 🍈

Models by TU Wien (3)

Ray-traced delays: containing full tropospheric delay

- for all VLBI observations S
- tool for production of individual ray-traced delays

1. Enter your email address (the .radiate file will be sent to this address): email address

2. Specify the space geodetic technique (the specified station(s) must occur in the respective station coordinate file gnss.ell , ylbiell or doris.ell):

GNSS
VLBI
DORIS

3. Input the observation specifications here:

7847.77125 tehn 0.352916723545060 0.948759486060269

Models by TU Wien (4)

For optical frequencies (SLR):

Vienna Mapping Functions 3 optical

A Priori Horizontal Gradients optical

X

To be released in 2019!

Describe the actual state of the atmosphere 1°x1° horizontal resolution, 25 pressure levels

NWM by ECMWF:

- **Operational**: 1 day in retrospect
- Forecast: 1 day in advance
- **ERA-Interim**: reanalysis product; some months in retrospect

Workflow Mapping Functions

Workflow Horizontal Gradients

GNSS + DORIS users

IGS+IDS stations

Arbitrary locations

VLBI users

Discrete products:

Empirical products:

IVS stations

Discrete products:

ILRS stations

All data and directions how to use it:

vmf.geo.tuwien.ac.at

