

Uniwersytet Przyrodniczy we Wrocławiu

Troposphere delay modeling in Satellite Laser Ranging

<u>Mateusz Drożdżewski</u>¹, Krzysztof Sośnica¹, Kyriakos Balidakis², Florian Zus² Institute of Geodesy and Geoinformatics GFZ Potsdam

Satellite laser ranging - principle

 $\frac{-}{2} * c *$

The total ("2-way") time of flight given by the timing measurements

Vacuum speed of light (299 792 458 m/s) *IERS 2010 standards* Range measurement may be described by the model:

$$\rho = \frac{1}{2} (\rho_{up}(t) + \rho_{down}(t)) + d_{rel} + d_{atm} + d_{LRA} + \epsilon$$
Uplink Downlink distance Downlink distance

Troposphere delay modeling in SLR solutions

Current model (no tropo parameters are estimated in SLR solutions):

Wet delay: based on water vapor pressure records and the position of an SLR station (latitude, height)

(Mendes and Pavlis, 2004)

 $d_{atm} = m_{fs}(d_h^z + d_{nh}^z)$

Common mapping function:

based on temperature records and the position of an SLR station (latitude, height) Hydrostatic delay: based on pressure records and the position of an SLR station (latitude, height)

(Mendes and Pavlis, 2004)

(Mendes et al., 2002)

A full symmetricity of the atmosphere over SLR stations is assumed

Troposphere delay modeling in SLR solutions (proposal)

Enhanced model:

In this model:

 Atmosphere assymetricity is taken into account in SLR solutions,
 SLR solutions become more consistent with GNSS and VLBI where horizontal gradients are modeled.

SLR solutions

Estimated parameters:

- Station coordinates (7-day)
- Orbit parameters:
 - 6 Keplerian + 5 empirical (7-day)
- Geocenter coordinates (7-day)
- Range biases for selected stations (1-3 per week)
- X-pole, Y-pole (8 par per 7-day)
- UT1-UTC (8 par per 7-day, 1 parameter fixed)
- Horizontal gradients of troposphere delay.

Mean offsets

The mean offset projected on to 10 degree elevation angle using Chen-Herring mapping function for all solutions.

•The horizontal gradients derived for GNSS-SLR co-located stations for the elevation angles 10 degrees achieve values up to 20 mm

•The best consistency of 3 source of gradients we can see for the station Yarragadee and Arequipa

• For a large number of stations we see a consistency to a certain extent.

Values of N and E offsets for selected SLR stations mapped to the elevation angle 10°

Satellite laser ranging as a tool for the recovery of tropospheric Gradients, Atm. Res. Drożdżewski M., Sośnica K., 2018 UNIWERSYTET PRZYRODNICZY WE WROCŁAWIU

Horizontal gradients dedicated for optical measurements

PMF troposphere delay model

New troposphere delay model PMF

Potsdam Mapping Function

How can we examine the impact of horizontal gradients on SLR observations ?

Observation residuals for elevation angle below 15 degrees

Impact of horizontal gradients on station coordinates repeatability

- 1. The main impact of station coordinates is caused by PMF (red dots, signal red line). The amplitude of annual signal is equal to 0.7 mm for solutions with horizontal gradients.
- 2. The differences of the estimated station coordinates reach the level of 2 mm, 1.2 and 0.2 for the North, East and Up component.
- 3. We observe phase shift of annual signal between PMF and PMF+O1.

Geocenter coordinates

Mean offset at the level of 0.12 mm for $Y \stackrel{-}{\ltimes}$ component for solutions with horizontal Gradients.

Occurrence of periodic components At the level of 0.16 mm for Y and Z Component.

	9 · · · · ·						
	Średnie wartości różnic współrzędnych geocentrum [mm]						
	X [mm]		Y [mm]		Z [mm]		
	Średnia	σ	Średnia	σ	Średnia	σ	
PMF	-0.003	0.004	-0.010	0.003	-0.056	0.008	
PMF+ O1	0.039	0.013	-0.122	0.009	0.006	0.017	
PMF+01+02	0.035	0.013	-0.126	0.009	-0.038	0.017	

Pole coordinates

Improvement of mean offset value At the level of 20 μas for X component

Improvement of mean offset between combined solution C04 and SLR at the level of 24 µas for Y component

 $30 \mu as = 1 mm$ On the Earth surface

	X-POLE (μas)		Y-POLE (μas)		LOD (μs/day)		Number of
	OFF	SIG	OFF	SIG	OFF	SIG	
Standard sol.	22	7.5	38	7.6	-77	5.2	574
PMF	23	7.5	38	7.6	-77	5.2	574
PMF 01	2	7.5	14	7.6	-76	5.2	574
PMF 01+02	2	7.5	14	7.6	-75	5.2	574

Conclusions

- Modelling troposphere delay with horizontal gradients in SLR solutions improves observation residuals, especially for low elevation angles. (small effect for LAGEOS, large effect for Sentinel 3a)
- 2. SLR solutions become more consistent with the IERS-14-C04 combined series, which means that SLR solutions become more consistent with other techniques of space geodesy.
- 3. Second order gradients can be neglected in SLR solutions.

Next step:

1. VMF30 (impelementations ready in Bernese GNSS Software, tests ongoing)

Uniwersytet Przyrodniczy we Wrocławiu

Thank you

Characteristic of PMF troposphere delay model

Parametr	Opis
Software	GFZ direct numerical simulation (DNS) tool
Ray-traicing method	2D
Model:	ERA-Interim
Spatial resolution	0.5° x 0.5°
Vertical resolution NWM	60 layers
Elevation angle	3, 5, 7, 10, 15, 20, 30, 50, 70, 90
Horizontal resolution	0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360

Models derived by: Dr dipl Ing. Florian Zus, Dipl Ing. Kyriakos Balidakis

Comparison of horizontal gradients data time series: PMF & VMF30 station: Yarragadee

Horizontal gradients derived from PMF are more scattered

Gradienty horyzontalne PMF wykazują większe

amplitudy roczne i szum nisko częstotliwościowy UNIWERSYTET PRZYRODNICZY WE WROCŁAWIU

Impact of horizontal gradients derived from PMF & VMF30

Impact of horizontal gradients derived from PMF & VMF30

Podstawy pomiarów SLR

a he had a go beek and a second a he had a he had a be		
	LAGEOS-1	LAGEOS-2
Waga:	406.96 kg	405.38 kg
Sponsor:	United States	United States and Italy
Reflektory:	426 corner cubes	426 corner cubes
kształt:	Kulisty	Kulisty
RRA Średnica:	60 cm	60 cm
Zastosowanie:	Geodezja	Geodezja
Okres obiegu:	225 minut	223 minut
Perygeum:	5,860 km	5,620 km
Orbita:	Коłоwа	kołowa
Data wystrzelenia:	Maj 4, 1976	Październik 22, 1992
Inklinacja:	109.84 stopni	52.64 stopni
Czas eksploatacji:	Wiele dekad	Wiele dekad
Ekscentryczność:	0.0045	0.0135
COSPAR ID:	7603901	9207002

Station coordinates repeatability

Publikacje

Publikacje wyróżnione w JCR (lista "A" MNiSzW):

Sośnica K, Prange L, Kaźmierski K, Bury G, **Drożdżewski M**, Zajdel R, Hadaś T (2018) *Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes*, Journal of Geodesy 92(2), pp. 131-148. doi:10.1007/s00190-017-1050-x, **pkt. 40; IF 4.633**

Drożdżewski M, Sośnica K, (2018) Satellite laser ranging as a tool for the recovery of tropospheric gradients, Atmospheric Research 212 pp. 33-42, https://doi.org/10.1016/j.atmosres.2018.04.028 pkt. 30; IF 3.817

Publikacje w czasopismach recenzowanych:

Drożdżewski M. (2017) *TROPOSPHERE DELAY MODELING WITH GRADIENTS FOR SLR*: *FIRST RESULTS*, 19th Professional Conference of Postgraduate Students "JUNIORSTAV 2017", Brno, Czech Republic, 26.01.2017