

Urban water demand prediction using human mobility data

Project team: Kamil Smolak, Barbara Kasieczka, Katarzyna Siła-Nowicka, Katarzyna Kopańczyk, Witold Rohm, Wiesław Fiałkiewicz

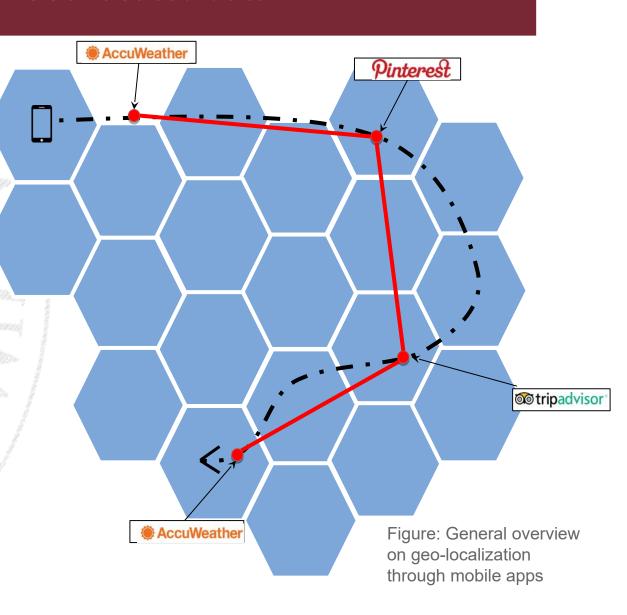
WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Geo-located data

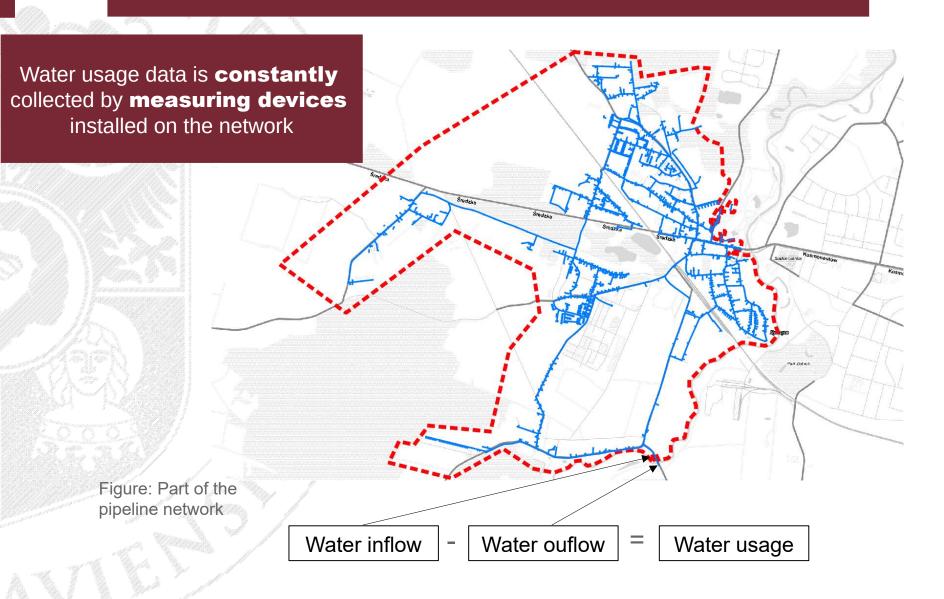
Human mobility data is collected through smartphones

Geo-located data consist of ID, timestamp and coordinates

Every time an user runs a smartphone application his/her location is recorded



Water usage data



Water usage data

Water usage data are aggregated over a one-hour period

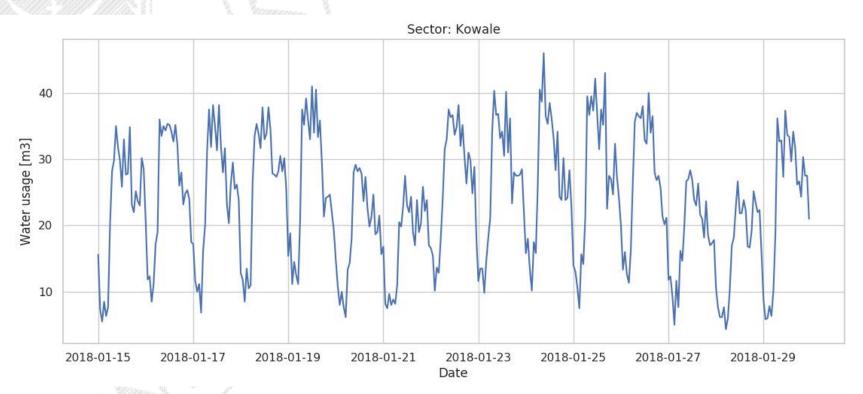


Figure: Sample of water demand data

Case study

The study site is located in **Wrocław.**

The site is divided into **District Metering Areas**(DMAs).

All the calculations are referenced to the DMAs.

Figure: Map of DMA sectors.

Case study

Geo-located data consist of **564,069** records

After filtration **38,148** were used for further studies

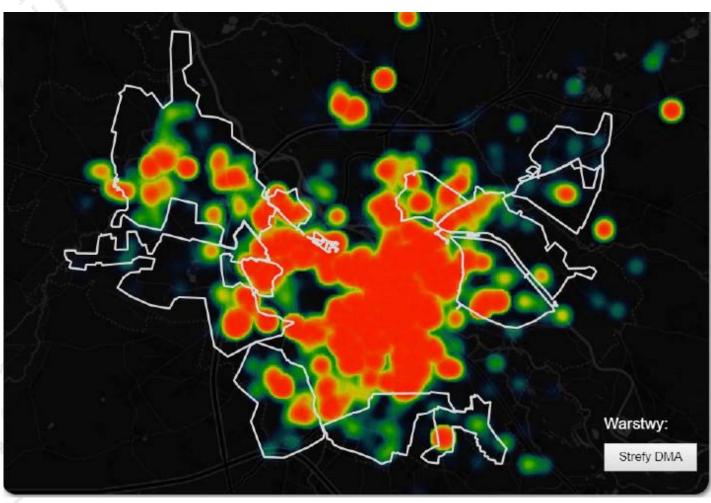


Figure: Heatmap of geo-located data

and DMAs (author: Barbara

Kasieczka)

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Forecasting framework

The forecasting process has been fully automated within a consistent framework

Model splits data into **88 days of learning and testing** sets and **23 days of validation** set.

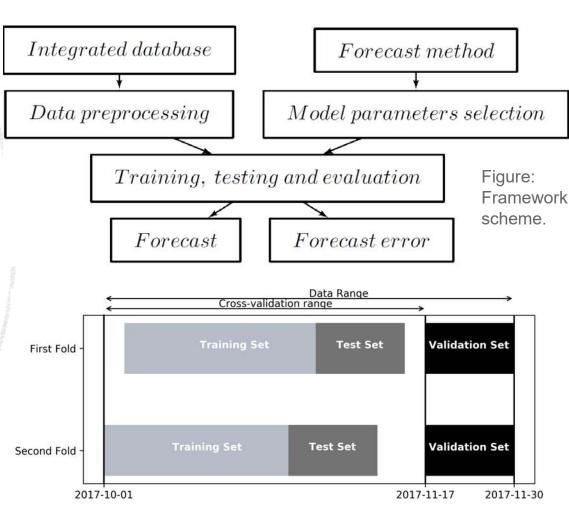


Figure: Cross-validation scheme.

Training and testing sets are moved insinde of 88 days range.

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Forecasting framework

The framework is independent of the forecasting method. Therefore, machine learning and classical approaches are compared.

Forecasting methods used in the study

Machine Learning	Classical
Random Forest	SARIMA
Extremely Randomized Trees	SARIMAX
Support Vector Regression	

Data preprocessing

Water demand data

Data were preprocessed to remove outliers and fill data gaps when possible

Geo-located data

Data were preprocessed to remove outliers

Furthermore, geo-located data are preprocessed to maximise its impact on predictions.

First, geo-located data are transformed into time-series

Initially, correlation with water usage time-series is very low

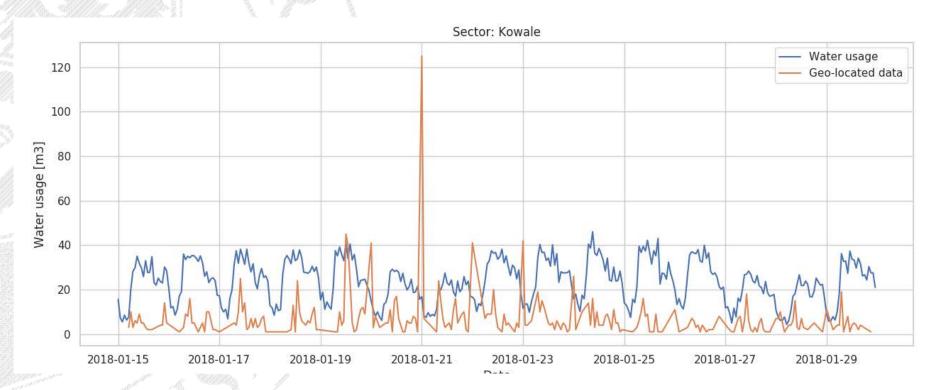
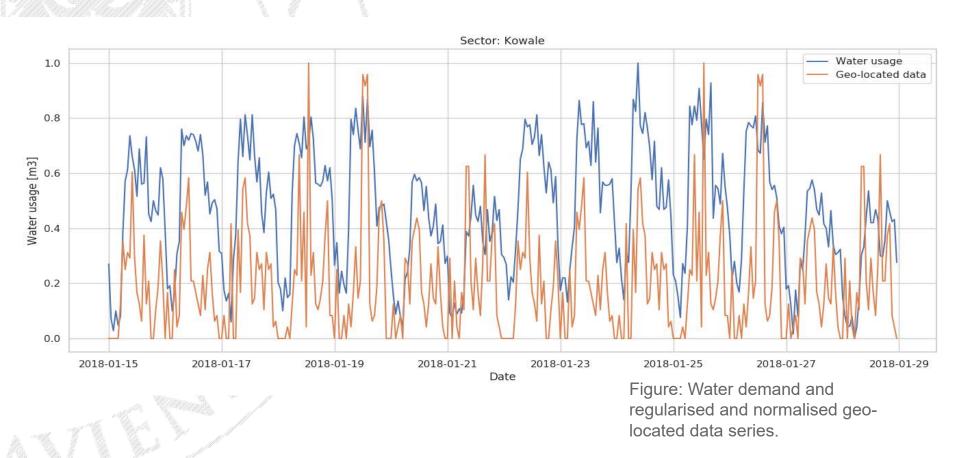


Figure: Water demand and unprocessed geo-located data series.

Geo-located data are transformed into a "typical week"



Next, geo-located series are transformed using **decay** parameter

It informs how long a single record is accounted to stay in the DMA

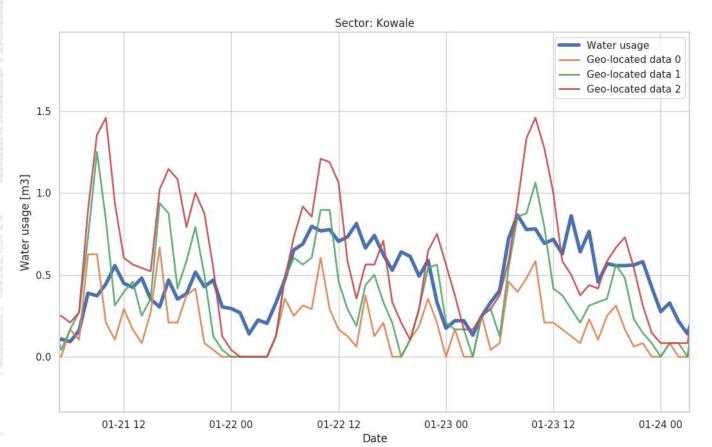


Figure: Results of geo-located series tranformations using various decay parameters.

Finally, water and geo-located series offset is determined using Fast Fourier transform

The solution that maximises series correlation is taken for further calculations

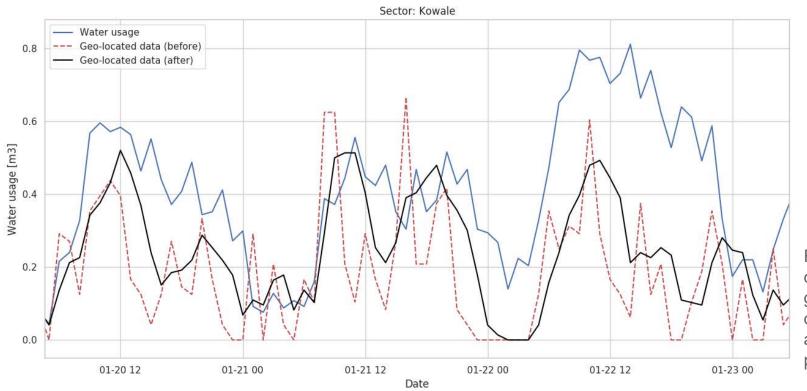


Figure: Water demand and geo-located data before and after processing.

Model parameters selection

Lags determine the number of previous time-series records considered during prediction task.

For water consumption data best solution is obtained for 168 lags (a length of the week)

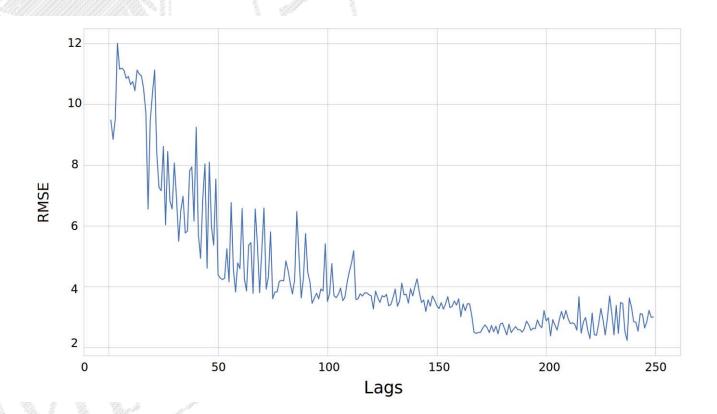


Figure: RMSE depending on numbers of lags used in prediction.

Results

Kowale sector – DMA of industrial type

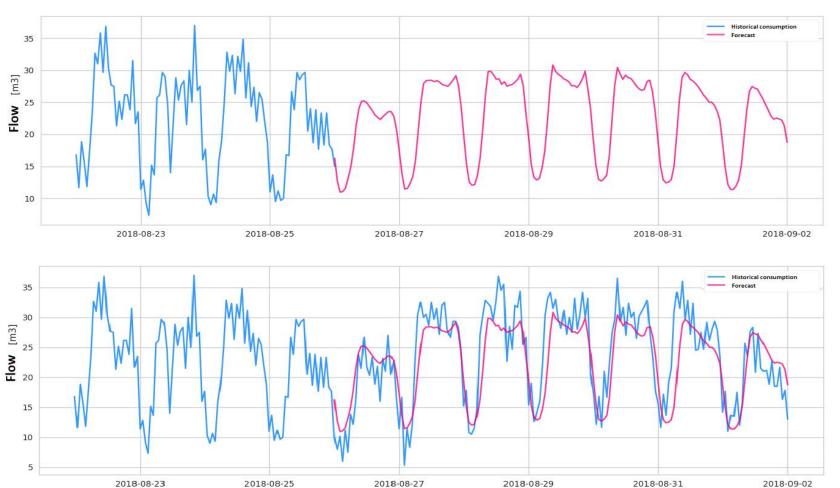


Figure: A comparison of predicted and measured water usage

Results

Using geo-located data **improves** forecasting accuracy

Average accuracy score was **87.6%**

The best forecasting method was **Extremely Randomized Trees**

TABLE I
RMSE FOR FORECASTING MODELS

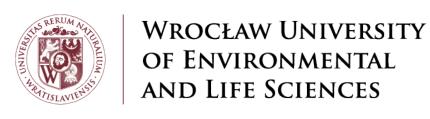
Method	W	G (D , O)	G(0,0)
Random forests	0.138	0.130	0.149
ExtraTrees	0.132	0.129	0.124
SVR	0.207	0.175	0.166
SARIMA / SARIMAX	0.199	0.167	-

Conclusions and further works

The best performing algorithm was machine learning tree-based method, which outperformed the classical approach

Geo-located data improves predictions accuracy. However, **there is still a room for improvement** of geo-located data processing methods, which will result in further accuracy improvement.

Due to the high series correlation, we plan to investigate if it is possible to base water demand predictions on geo-located data only



Contact: kamil.smolak@upwr.edu.pl

Urban water demand prediction using human mobility data